

Journal of Nuclear Materials 280 (2000) 136-150



www.elsevier.nl/locate/jnucmat

# Thermodynamic modelling of the N–U system

P.-Y. Chevalier \*, E. Fischer, B. Cheynet

Thermodata-INPG-CNRS (UMS THERMA), BP 66, F-38402 Saint Martin d'Hères cedex, France

Received 20 January 2000; accepted 24 March 2000

#### Abstract

Thermodynamic properties constitute part of our general knowledge about physical and chemical properties of nuclear materials, as the solid substance  $UN_{1-x}(fcc_B1)$ . This is why the thermodynamic modelling of the N–U binary system is performed here from a critical assessment of most of the available experimental information, with one of the most commonly used optimization procedure. Optimized Gibbs energy parameters are given, and a comparison between the calculated and experimental equilibrium phase diagram or thermodynamic properties is presented. © 2000 Elsevier Science B.V. All rights reserved.

#### 1. Introduction

The critical assessment of the N-U binary system is performed in this work by using the program of Lukas et al. [1]. We first describe the general principle of the thermodynamic modelling and assessment method. Then we present for the N-U binary system, the equilibrium phases, the complete analysis of the available experimental information, concerning both phase diagram and thermodynamic properties, and finally, the detailed optimization results. On the one hand, optimized Gibbs energy parameters of all condensed substance and solution phases are presented, and constitute a record in the specific nuclear part of the THERM-ALLOY solution database [2]; on the other hand, the optimized phase diagram and specific thermodynamic properties of the N-U binary system are calculated and compared to the experimental ones.

### 2. Thermodynamic modelling

#### 2.1. Substances

In the classical substance databases, the fundamental thermodynamic properties stored for a substance are the enthalpy of formation  $\Delta H^{\circ}f_{298.15 \text{ K}}$ , the entropy at room

temperature  $S_{298.15 \text{ K}}^{\circ}$ , the heat capacity  $C_{\rm p}$  at constant pressure versus temperature T (K), according to the relation (1), and if necessary, the transition enthalpies  $L_{\rm tr}$  if the substance shows structural transformations at temperatures  $T_{\rm tr}$ .

$$C_{p} = C_{k} + D_{k}T + E_{k}T^{2} + F_{k}T^{-2} + \cdots$$

$$(+G_{k}T^{3} + H_{k}T^{4} + I_{k}T^{6} + J_{k}T^{-10} + L_{k}T^{-3} + M_{k}T^{-4})$$
for  $T_{k} < T < T_{k+1}$ . (1)

In the format used for phase diagram calculations, the stored quantity is the Gibbs energy of the substance  $\Phi$ ,  $G - H_{\text{SER}}$ , referred to a given reference state. SER means 'stable element reference' and is defined by the use of  $H_{298.15 \text{ K}}$  and  $S_{0 \text{ K}}$  for the stable state of the pure elements at 298.15 K and 1 bar. It is possible to calculate directly this quantity from the fundamental thermodynamic values, and reciprocally.

$$G - H_{\text{SER}} = a_k + b_k T + c_k T \log T + d_k T^2 + e_k T^3 + f_k T^{-1} + \dots (+g_k T^4 + h_k T^5 + i_k T^7 + j_k T^{-9} + k_k \log T + l_k T^{-2} + m_k T^{-3}) \text{for } T_k < T < T_{k+1}.$$
(2)

In this expression, the coefficients  $c, d, e, f, \ldots$  are connected to those of the heat capacity, while a and b are two integration constants depending on all the fundamental thermodynamic values. The points of suspension mean that extra terms may be added if necessary, and

<sup>\*</sup> Corresponding author.

<sup>0022-3115/00/\$ -</sup> see front matter © 2000 Elsevier Science B.V. All rights reserved. PII: S 0 0 2 2 - 3 1 1 5 ( 0 0 ) 0 0 0 4 3 - X

are often used for extrapolation outside the stable domain.

In some cases, the heat capacity is unknown, and is estimated by the Neuman–Koop rule. In this case, the Gibbs energy, referred to the pure elements with a given structure ( $\text{Ref}(1), \ldots, \text{Ref}(i)$ ), varies linearly versus temperature according to the simple relation

$$\Delta G = G - \sum x_i G_i^{\circ^{(\text{ref}(i))}} = a + bT, \qquad (3)$$

where *a* and *b* correspond directly to  $\Delta H$  and  $-\Delta S$  which are independent of temperature.

# 2.2. Solutions

In a general way, the Gibbs energy of a condensed solution phase is the sum of several terms: reference, ideal, excess and magnetism or ordering in some cases.

$$G = G^{\text{Ref}} + G^{\text{Id}} + G^{\text{Ex}}(+G^{\text{Mag}} + G^{\text{Ord}}).$$
(4)

In this work, we have used for the solid and liquid solution phases the general multisublattice model described by Sundman and Agren [3].

$$G^{\text{Ref}} = \sum_{\mathbf{r}} P_{\mathbf{r}}(Y)^{\circ} G_{\mathbf{r}},\tag{5}$$

where  ${}^{\circ}G_{\rm r}$  represents the Gibbs energy of all reference substances, obtained by making all the possible permutations on the different sublattices and by assuming successively that each sublattice is completely fulfilled by only one component.  $P_{\rm r}(Y)$  is the corresponding product of site fractions from the Y matrix:  $Y = (y_i^{\rm sl})$ , atomic fractions of the component *i* (pure or associate species) on the sublattice sl.

$$G^{\rm Id} = RT \sum_{\rm sl} N_{\rm s}^{\rm sl} \sum y_i^{\rm sl} \log y_i^{\rm sl}, \tag{6}$$

where  $N_s^{\text{sl}}$  is the number of sites of the sublattice sl and *R* is the perfect gas constant.

In the one- and two-sublattice model, the excess Gibbs energy for a multicomponent phase is equal to

$$G^{\text{Ex}} = \sum G^{\text{Ex}} \text{ (binary)} + G^{\text{Ex}} \text{ (ternary)}.$$
 (7)

Expressions (8) and (9) are used for one lattice, (10) and (11) for two sublattices:

$$G^{\text{Ex}} \text{ (binary)} = \sum_{j} \sum_{k} y_{j} y_{k} L_{j,k},$$
$$L_{j,k} = \sum_{\nu} L_{j,k}^{(\nu)} (y_{j} - y_{k})^{\nu}, \tag{8}$$

| Table 1                     |                                                      |              |       |
|-----------------------------|------------------------------------------------------|--------------|-------|
| Experimental and calculated | three-phase equilibria and congruent transformations | in the N–U s | ystem |

| Reaction                                                                                               | Experin | nental        |         |         | Calcul | lated |               |         |         |
|--------------------------------------------------------------------------------------------------------|---------|---------------|---------|---------|--------|-------|---------------|---------|---------|
|                                                                                                        | T (K)   | <i>t</i> (°C) | x (L)   | P (atm) | Ref.   | T (K) | <i>t</i> (°C) | x (L)   | P (atm) |
| $L + G \iff (\text{UN})(\text{fcc}_B1)$                                                                | 3073    | 2800          | 0.55    | 1       | [6]    | 3062  | 2789          | 0.575   | 1       |
|                                                                                                        | 3078    | 2805          | 0.55    | 1       | [7]    | 3098  | 2825          | 0.552   | 2.5     |
|                                                                                                        | 3123    | 2850          | 0.50    | >2.5    | [13]   | 3134  | 2861          | 0.528   | 10      |
| $G + (UN)(fcc_B1) \iff \beta U_2N_3$                                                                   | 1618    | 1345          |         |         | [6]    | 1622  | 1349          |         |         |
|                                                                                                        | 1625    | 1352          |         |         | [7]    |       |               |         |         |
|                                                                                                        | 1623    | 1350          |         |         | [16]   |       |               |         |         |
| $G + \beta$ -U <sub>2</sub> N <sub>3</sub> $\iff \alpha$ -U <sub>2</sub> N <sub>3</sub>                | 1523    | 1250          |         |         | [6]    | 1408  | 1135          |         |         |
|                                                                                                        | 1405    | 1132          |         |         | [7]    |       |               |         |         |
| $\beta$ -U <sub>2</sub> N <sub>3</sub> $\iff \alpha$ -U <sub>2</sub> N <sub>3</sub> + (UN)(fcc_B1)     | 1393    | 1120          |         |         | [6]    | 1228  | 955           |         |         |
|                                                                                                        | 1213    | 940           |         |         | [7]    |       |               |         |         |
| $L \Longleftrightarrow \gamma$ -U(bcc_A2)                                                              | 1408    | 1135          |         |         | [5]    | 1408  | 1135          |         |         |
| $L \iff UN(fcc_B1) + \gamma - U(bcc_A2)$                                                               | 1403    | 1130          | 0.99983 |         | [6]    | 1408  | 1135          | 0.99994 |         |
|                                                                                                        | 1403    | 1130          |         |         | [14]   |       |               |         |         |
|                                                                                                        | 1403    | 1130          |         |         | [15]   |       |               |         |         |
|                                                                                                        | 1405    | 1132          |         |         | [7]    |       |               |         |         |
| $\gamma$ -U(bcc_A2) $\iff \beta$ -U(tet)                                                               | 1049    | 776           |         |         | [5]    | 1049  | 776           |         |         |
| $\beta\text{-}U(tet) \Longleftrightarrow \alpha\text{-}U(ort\_A20)$                                    | 942     | 669           |         |         | [5]    | 942   | 669           |         |         |
| $\beta\text{-}U(\text{tet}) \Longleftrightarrow \alpha\text{-}U(\text{ort\_A20}) + UN(\text{fcc\_B1})$ | 938     | 665           |         |         | [6]    |       |               |         |         |
|                                                                                                        |         |               |         |         | [7]    |       |               |         |         |

$$G^{\text{Ex}} (\text{ternary}) = \sum_{i} \sum_{j} \sum_{k} y_{i} y_{j} y_{k} L_{i,j,k},$$
  
$$L_{i,j,k} = y_{i} L_{i,j,k}^{1} + y_{j} L_{i,j,k}^{2} + y_{k} L_{i,j,k}^{3},$$
 (9)

$$G^{\text{Ex}} \text{ (binary)} = \sum_{l} \sum_{j} \sum_{k} y_{l} y_{j} y_{k} L_{j,k:l},$$
$$L_{j,k:l} = \sum_{v} L_{j,k:l}^{(v)} (y_{j} - y_{k})^{v}, \tag{10}$$

$$G^{\text{Ex}} (\text{ternary}) = \sum_{i} \sum_{j} \sum_{k} \sum_{l} y_{i} y_{j} y_{k} y_{l} L_{i,j,k;l},$$
  
$$L_{i,j,k;l} = y_{i} L_{i,j,k;l}^{1} + y_{j} L_{i,j,k;l}^{2} + y_{k} L_{i,j,k;l}^{3}.$$
 (11)

 $L_{j,k}$  and  $L_{i,j,k}$  or  $L_{j,k:l}$  and  $L_{i,j,k:l}$  represent the binary and ternary interaction parameters between the components *i*, *j* and *k* of one sublattice, the second sublattice (if existing) being supposed completely fulfilled by the component *l*. These parameters vary with temperature similar to relation (2). The binary interaction parameters are described by using a Redlich–Kister type polynomial expression [4].

#### 2.3. Assessment method

The values used for the lattice-stabilities of the pure condensed elements have been taken from the Scientific Group Thermodata Europe (SGTE) database, published by Dinsdale [5], for the following stable or metastable structures:  $U_1(\text{ort}_A 20, \text{ tet}, \text{ bcc}_A 2, L)$ ,  $N_1(L)$ . The thermodynamic data for gaseous species are taken from the DATACOMP substance database [2], and reported in Table 9.

Table 2

Solubility of nitrogen in liquid uranium versus temperature from Bugl and Bauer [13]

| $T^{L}(\mathbf{K})$ | S (at.% N) | $x^{L}$ (U) (atomic fraction) |
|---------------------|------------|-------------------------------|
| 1473                | 0.043      | 0.99957                       |
| 1573                | 0.0998     | 0.99900                       |
| 1673                | 0.209      | 0.99791                       |
| 1773                | 0.405      | 0.99595                       |
| 1873                | 0.728      | 0.99272                       |
| 1973                | 1.23       | 0.9877                        |
| 2073                | 1.99       | 0.9801                        |
| 2173                | 3.07       | 0.9693                        |
| 2273                | 4.56       | 0.9544                        |
| 2373                | 6.55       | 0.9345                        |
| 2473                | 9.13       | 0.9087                        |
| 2573                | 12.41      | 0.8759                        |
| 2673                | 16.48      | 0.8352                        |
| 2773                | 21.45      | 0.7855                        |
| 2873                | 27.41      | 0.7259                        |
| 2973                | 34.44      | 0.6556                        |
| 3073                | 42.65      | 0.5735                        |
| 3123                | 48.16      | 0.5184                        |

The critical assessment of the coefficients,  $a_k, b_k, c_k, d_k, e_k, f_k, \ldots$ , for any other binary stoichiometric substances, and of the binary interaction parameters  $L_{j,k}^{(v)}$  and  $L_{j,k,l}^{(v)}$  for a binary or pseudo-binary solution, was performed for the binary N–U system by using the optimization program developed by Lukas et al. [1], which allows to take into account simultaneously all the available experimental information, equilibrium phase diagram and thermodynamic properties.

The optimized Gibbs energy parameters of latticestabilities and condensed substances are reported in Table 10 and the ones of solid solutions and liquid phase in Table 11. They constitute a part of the THERM-ALLOY solution thermodynamic database [2], devoted to nuclear applications.

#### 3. Experimental information

# 3.1. Short presentation of the different phases

The phase diagram of the N–U binary system was successively reported in a compilation work by Shunk [6] and Okamoto [7]. The condensed solutions and stoichiometric substances, with the symbols currently used

Table 3

Experimental phase diagram information from Benz and Bowman<sup>a</sup> [15]

| T (K)                          | $x^{\phi 1}$ (U)                         | $x^{\phi 2}$ (U) |
|--------------------------------|------------------------------------------|------------------|
| UN liquidus: $L(\phi 1)$       | $+ N_{1-x}U_1(fcc_B1)(\phi$              | o2)              |
| 2273                           | 0.960                                    | (0.52)           |
| 2373                           | 0.917                                    | (0.53)           |
| 2823                           | 0.660                                    | (0.53)           |
| 2885                           | 0.630                                    | (0.54)           |
| UN solidus: N <sub>1-x</sub> U | $L_1(\text{fcc}_B1)(\phi 1) + L(\phi 2)$ | 2)               |
| 1773                           | 0.51020                                  | (0.99595)        |
| 1943                           | 0.51813                                  | (0.9894)         |
| 1960                           | 0.51282                                  | (0.98844)        |
| 2070                           | 0.52083                                  | (0.98036)        |
| 2070                           | 0.52356                                  | (0.98036)        |
| 2073                           | 0.51813                                  | (0.98009)        |
| 2085                           | 0.52083                                  | (0.97899)        |
| 2932                           | 0.53476                                  | (0.68579)        |
| 2992                           | 0.53191                                  | (0.64090)        |
| 2998                           | 0.52910                                  | (0.63618)        |
| 3024                           | 0.51282                                  | (0.61523)        |
| 3108                           | 0.51282                                  | (0.54188)        |
| 3109                           | 0.51020                                  | (0.54095)        |
| 3113                           | 0.50505                                  | (0.53724)        |
| 3126                           | 0.50761                                  | (0.52501)        |
| 3092                           | 0.50761                                  | (0.51000)        |
| 3093                           | 0.50505                                  | (0.51000)        |
| 3098                           | 0.50761                                  | (0.51000)        |
| 3103                           | 0.50505                                  | (0.51000)        |

 $^{a}x =$  atomic fraction. Values between brackets are estimated.

Table 4

Experimental heat capacity and enthalpy of UN versus temperature from Counsell et al. [28], Westrum and Barber [29], Affortit [30,31], Cordfunke and Muis [32], and Takahashi et al. [42]

| <i>T</i> (K) | C <sub>p</sub><br>(J/(mol K)<br>[28]) | <i>T</i> (K) | C <sub>p</sub><br>(J/(mol K)<br>[30,31]) | H <sub>T</sub> – H <sub>800</sub><br>(J/mol) | Т (К) | $H_{\rm T} - H_{298}$<br>(J/(mol K)<br>[32]) | <i>T</i> (K) | C <sub>p</sub><br>(J/(mol K)<br>[42]) | H <sub>T</sub> - H <sub>298</sub><br>(J/mol) |
|--------------|---------------------------------------|--------------|------------------------------------------|----------------------------------------------|-------|----------------------------------------------|--------------|---------------------------------------|----------------------------------------------|
| 298.15       | 47.086                                | 800          | 56.902                                   | 0                                            | 386.8 | 2205                                         | 298.15       | 47.823                                | 0                                            |
| 300          | 47.160                                | 900          | 58.702                                   | 5782                                         | 397.8 | 2450                                         | 300          | 47.907                                | 88                                           |
| 310          | 47.626                                | 1000         | 60.459                                   | 11736                                        | 433.2 | 3368                                         | 350          | 49.999                                | 2540                                         |
| 320          | 48.080                                | 1100         | 62.216                                   | 17866                                        | 434.1 | 3377                                         | 400          | 51.547                                | 5079                                         |
|              | [29]                                  | 1200         | 63.973                                   | 24184                                        | 463.5 | 4102                                         | 450          | 52.760                                | 7686                                         |
| 306.8        | 48.240                                | 1300         | 65.731                                   | 30 669                                       | 485.4 | 4710                                         | 500          | 53.764                                | 10351                                        |
| 316.3        | 48.710                                | 1400         | 67.488                                   | 37 321                                       | 508.6 | 5343                                         | 550          | 54.685                                | 13062                                        |
| 326.0        | 49.100                                | 1500         | 69.245                                   | 44 141                                       | 513.0 | 5489                                         | 600          | 55.480                                | 15816                                        |
| 335.8        | 49.464                                | 1600         | 71.002                                   | 51 170                                       | 531.1 | 6044                                         | 650          | 56.233                                | 18610                                        |
| 345.9        | 49.722                                | 1700         | 72.760                                   | 58 367                                       | 546.4 | 6347                                         | 700          | 56.944                                | 21 4 39                                      |
|              |                                       | 1800         | 74.517                                   | 65731                                        | 589.3 | 7621                                         | 750          | 57.614                                | 24 301                                       |
|              |                                       | 1900         | 76.274                                   | 73 262                                       | 617.5 | 8328                                         | 800          | 58.241                                | 27 196                                       |
|              |                                       | 2000         | 78.032                                   | 80 960                                       | 618.8 | 8344                                         | 850          | 58.869                                | 30125                                        |
|              |                                       | 2100         | 79.789                                   | 88 868                                       | 638.1 | 8943                                         | 900          | 59.496                                | 33 083                                       |
|              |                                       | 2200         | 81.546                                   | 96943                                        | 654.3 | 9328                                         | 950          | 60.082                                | 36075                                        |
|              |                                       | 2300         | 83.262                                   | 105 186                                      | 658.5 | 9418                                         | 1000         | 60.668                                | 39 091                                       |
|              |                                       |              |                                          |                                              | 677.9 | 9922                                         |              |                                       |                                              |
|              |                                       |              |                                          |                                              | 701.3 | 10615                                        |              |                                       |                                              |

Table 5

Calculated thermal properties of UN versus temperature (this work) compared to assessed ones from Tagawa [16] and Matsui and Ohse [39]

| T (K) | C <sub>p</sub> (J/(mol K | .))   |        | $H_{\rm T} - H_{298} ~({ m J}/$ | mol)     |         |
|-------|--------------------------|-------|--------|---------------------------------|----------|---------|
|       | [16]                     | [39]  | Calc.  | [16]                            | [39]     | Calc.   |
| 298   | 47.572                   | 47.82 | 47.356 | 0                               | 0        | 0       |
| 300   | 47.656                   | 47.91 | 47.468 | 88                              | 88       | 88      |
| 400   | 51.505                   | 51.55 | 51.540 | 5067                            | 5079     | 5059    |
| 500   | 53.639                   | 53.76 | 53.702 | 10334                           | 10 3 5 1 | 10 246  |
| 600   | 55.187                   | 55.48 | 55.168 | 15778                           | 15816    | 15 566  |
| 700   | 56.484                   | 56.94 | 56.354 | 21 364                          | 21 439   | 21 041  |
| 800   | 57.697                   | 58.24 | 57.436 | 27 075                          | 27 196   | 26729   |
| 900   | 58.911                   | 59.50 | 58.495 | 32907                           | 33 082   | 32 700  |
| 1000  | 60.124                   | 60.67 | 59.576 | 38 857                          | 39 091   | 38 980  |
| 1100  | 61.379                   | 61.84 | 60.703 | 44 932                          | 45 218   | 45 264  |
| 1200  | 62.718                   | 63.01 | 61.891 | 51 137                          | 51 461   | 51 513  |
| 1300  | 64.099                   | 64.18 | 63.151 | 57 476                          | 57 821   | 57 7 59 |
| 1400  | 65.563                   | 65.31 | 64.487 | 63957                           | 64 295   | 64 0 37 |
| 1500  | 67.111                   | 66.48 | 65.904 | 70 592                          | 70 884   | 70 382  |
| 1600  | 68.743                   | 67.61 | 67.405 | 77 383                          | 77 586   | 76828   |
| 1700  | 70.417                   | 68.74 | 68.993 | 84 337                          | 84 402   | 83412   |
| 1800  | 72.216                   | 69.87 | 70.668 | 91 471                          | 91 330   | 90171   |
| 1900  | 74.099                   | 70.96 | 72.432 | 98784                           | 98 371   | 97 143  |
| 2000  | 76.023                   | 72.09 | 74.285 | 106286                          | 105 525  | 104 365 |
| 2100  | 78.073                   | 73.22 | 76.229 | 113 993                         | 112 791  | 111 876 |
| 2200  | 80.207                   | 74.34 | 78.263 | 121 905                         | 120 168  | 119713  |
| 2300  | 82.383                   | 75.46 | 80.390 | 130 035                         | 127 658  | 127914  |
| 2400  | 84.684                   | 76.58 | 82.607 | 138 386                         | 135 260  | 136 519 |
| 2500  | 87.069                   | 77.69 | 84.917 | 146976                          | 142 974  | 145 565 |
| 2600  | 89.538                   |       | 87.318 | 155804                          |          | 155 092 |
| 2700  | 92.090                   |       | 89.812 | 164 883                         |          | 165138  |
| 2800  | 94.726                   |       | 92.397 | 174 226                         |          | 175741  |
| 2900  | 97.445                   |       | 95.076 | 183 832                         |          | 186942  |
| 3000  | 100.29                   | 83.27 | 97.847 | 193 719                         | 183 216  | 198 779 |

Table 6 Experimental heat capacity and enthalpy of  $UN_{1.54}$  versus temperature from Tagawa [16,18]

| T (K)  | $C_p$ (J/(mol K)) | $H_{\rm T}-H_{\rm 800}~({\rm J/mol})$ |
|--------|-------------------|---------------------------------------|
| 298.15 | 20.920            | 0                                     |
| 300    | 21.035            | 38                                    |
| 400    | 25.005            | 2362                                  |
| 500    | 27.245            | 4985                                  |
| 600    | 28.827            | 7791                                  |
| 700    | 30.062            | 10737                                 |
| 800    | 31.149            | 13 799                                |
| 900    | 32.121            | 16962                                 |
| 1000   | 33.027            | 20 220                                |
| 1100   | 33.900            | 23 567                                |
| 1200   | 34.757            | 27 002                                |
| 1300   | 35.580            | 30 519                                |
| 1400   | 36.388            | 34116                                 |
| 1500   | 37.195            | 37 796                                |
| 1600   | 37.985            | 41 557                                |
| 1700   | 38.776            | 45 395                                |

in this work, are the following: liquid phase, *L*; UN intermediate solid solution,  $N_{1-x}U_1(\text{fcc}_B1)$ ;  $\alpha$ -U<sub>2</sub>N<sub>3</sub>,  $N_3U_2(L_T)$ , low-temperature form;  $\beta$ -U<sub>2</sub>N<sub>3</sub>,  $N_3U_2(H_T)$ , high-temperature form;  $\alpha$ -U, U(ort\_A20);  $\beta$ -U, U(tet);  $\gamma$ -U, U(bcc\_A2). Hansen and Anderko [8] also reported that no evidence of solution of nitrogen in uranium metal could be found (<100 ppm or 0.01 wt% over the entire range 823–1173 K). The gas phase is noted *G*.

The structures of the intermetallic compounds are given by Hansen and Anderko [8], Elliott [9] and Shunk [6].

The lattice parameter of UN, fcc\_B1 type, isotypic with NaCl, was reported as a = 4.890 [8],  $a = 4.890\pm$  0.001, a = 4.8899 Å at 299.15 K [9],  $a = 4.8895\pm$  0.0005 Å [6]. Shunk [6] also reported  $a = 4.8835\pm$ 0.0005 Å for UN<sub>0.8</sub>,  $a = 4.875\pm$ 0.005 Å for UN<sub>1.04</sub>,  $a = 4.893\pm$ 0.005 Å for UN<sub>1.10</sub>. Two other values,  $a = 4.8897\pm$ 0.0004 and  $a = 4.8890\pm$ 0.0004 Å, were also given for UN. Muromura and Tagawa [10] showed the influence of the impurities O and C on the lattice parameter, and found that the value of 4.8892 Å

#### Table 7

Calculated thermodynamic functions of UN(fcc\_B1) versus temperature (this work) compared to the assessed ones from Tagawa [16] and Matsui and Ohse [39]

| T (K) | $\Delta H^{\circ} f(UN) (J_{*})$ | /mol)    |          | $\Delta S^{\circ} f(UN) (J_{*})$ | /(mol K)) |         |
|-------|----------------------------------|----------|----------|----------------------------------|-----------|---------|
|       | [16]                             | [39]     | Calc.    | [16]                             | [39]      | Calc.   |
| 298   | -295 809                         | -295 809 | -294 353 | -83.554                          | -83.53    | -83.584 |
| 300   | -295 809                         | -295 798 | -294 353 | -83.513                          | -83.50    | -83.550 |
| 400   | -295 056                         | -295136  | -293 697 | -81.337                          | -81.61    | -81.702 |
| 500   | -294 261                         | -294 414 | -293 061 | -79.580                          | -79.98    | -80.278 |
| 600   | -293 675                         | -293 773 | -292 566 | -78.534                          | -78.79    | -79.371 |
| 700   | -293 382                         | -293 305 | -292247  | -78.073                          | -78.08    | -78.876 |
| 800   | -293 298                         | -293 089 | -292101  | -77.948                          | -77.79    | -78.678 |
| 900   | -293 382                         | -293 180 | -292108  | -78.073                          | -77.88    | -78.685 |
| 1000  | -296 395                         | -296 050 | -294 705 | -81.253                          | -80.95    | -81.450 |
| 1100  | -300830                          | -300 383 | -298 882 | -85.479                          | -84.86    | -85.437 |
| 1200  | -300 579                         | -299 644 | -298 135 | -85.270                          | -84.22    | -84.787 |
| 1300  | -300244                          | -298 809 | -297414  | -84.977                          | -83.55    | -84.210 |
| 1400  | -299 742                         | -297 881 | -296 682 | -84.642                          | -82.87    | -83.667 |
| 1500  | -306 562                         | -306 950 | -305 997 | -89.496                          | -89.31    | -90.278 |
| 1600  | -306 311                         | -306 863 | -306166  | -89.328                          | -89.26    | -90.388 |
| 1700  | -305 892                         | -306 677 | -306 211 | -89.077                          | -89.14    | -90.415 |
| 1800  | -305 348                         | -304 734 | -306 092 | -88.743                          | -88.97    | -90.347 |
| 1900  | -304 595                         | -306000  | -305771  | -88.366                          | -88.76    | -90.174 |
| 2000  | -303 675                         | -305 507 | -305208  | -87.906                          | -88.51    | -89.886 |
| 2100  | -302 587                         | -304 910 | -304 366 | -87.362                          | -88.22    | -89.476 |
| 2200  | -301 248                         | -304 211 | -303 205 | -86.734                          | -87.89    | -88.937 |
| 2300  | -299 742                         | -303 405 | -301 686 | -86.065                          | -87.53    | -88.262 |
| 2400  | -298026                          | -302 491 | -299771  | -85.312                          | -87.15    | -87.447 |
| 2500  | -296 060                         | -301 474 | -297 418 | -84.517                          | -86.73    | -86.488 |
| 2600  | -293 842                         |          | -294 591 | -83.680                          |           | -85.379 |
| 2700  | -291 374                         |          | -291 249 | -82.718                          |           | -84.119 |
| 2800  | -288 696                         |          | -287 353 | -81.755                          |           | -82.703 |
| 2900  | -285 725                         | -286 669 | -282864  | -80.709                          |           | -81.128 |
| 3000  | -282 462                         | -294 775 | -277 743 | -79.622                          | -84.30    | -79.393 |

corresponded to 0.04 wt% carbon. They extrapolated a value of 4.8883 Å at zero carbon content. The oxygen content did not influence the lattice parameter in the range 0.011-0.094 wt%.

 $\alpha$ -U<sub>2</sub>N<sub>3</sub>, bcc of the Mn<sub>2</sub>O<sub>3</sub> (D53) type, forms solid solutions with N: it gradually changes to the Ca<sub>1</sub>F<sub>2</sub> (C1) type with increasing N content. The parametric variation of the lattice parameter as a function of N is reported as follows: it decreases from a = 10.688 [6] or a = 10.70 Å [8] for UN<sub>1.50</sub>, to a = 10.636 [6] or a = 10.60 Å [8] for UN<sub>1.75</sub>. UN<sub>2.00</sub> can be prepared only at a high N<sub>2</sub> pressure (126 atm) and has the ideal Ca<sub>1</sub>F<sub>2</sub> (C<sub>1</sub>) structure (a = 5.32 Å) [8]. At higher N contents, the parameter for the fcc\_C1 phase decreases from a = 5.303 Å at UN<sub>1.80</sub>, to a = 5.283 Å at UN<sub>1.86</sub> [6].

The hexagonal structure reported by Hansen and Anderko [8] and Elliott [9] for U<sub>2</sub>N<sub>3</sub> (a = 3.69 Å, c = 5.83 Å [8], a = 3.70 Å, c = 5.80 Å [9]) corresponds to the high-temperature form  $\beta$ -U<sub>2</sub>N<sub>3</sub>. [6] reported  $a = 3.699 \pm 0.001$  Å,  $c = 5.844 \pm 0.003$  Å at UN<sub>1.48</sub> and a = 3.700 Å, c = 5.826 Å at UN<sub>1.50</sub>.

# 3.2. Phase diagram

In the following, T is the temperature in Kelvin, x(U) the atomic fraction of uranium in the N–U system, L the liquidus or the liquid, and S is the solidus.

The melting point of UN was determined as  $2923 \pm 100$  K (2650°C) by Chiotti [11],  $2753 \pm 50$  K

(2480°C) by Newkirk and Bates [12],  $3123 \pm 30$  K (2850°C) by Bugl and Bauer [13] for  $P(N_2) > 2.5$  atm.

The invariant reactions and transition points reported in different compilation and experimental works from Dinsdale [5], Shunk [6], Okamoto [7], Storms [14], Benz and Bowman [15], and Tagawa [16] are reported in Table 1.

The phase relations in the system uranium-nitrogen were determined by Bugl and Bauer [13]. Cast specimens of UN were heated in a controlled nitrogen-pressure apparatus in order to study the decomposition behaviour: at pressures of nitrogen below 2.5 atm, UN decomposed at temperatures below 3123 K (2850°C), while at pressures greater than 2.5 atm, it melted congruently at 3123 K (2850°C). The equilibrium phase boundary between liquid (uranium-rich phase) and UN was determined by heating uranium in a UN crucible and then quenching and analysing the equilibrated phase. The calculated values of the solubility of nitrogen are reported in Table 2 ( $S = 2.45 \times 10^4 \exp(19525/T)$ , expressed in atomic percent and for temperature in K). The formation of a series of continuous solid solutions between the structurally dissimilar compounds N<sub>2</sub>U<sub>1</sub> (formed at high pressures and low temperatures) and  $N_3U_2$  was shown from experiments performed with a Sievert apparatus. UN decomposed at 3073 K (2800°C) and  $N_3U_2$  at 1618 K (1345°C) at  $P(N_2) = 1$  atm.

The U–N partial phase diagram was determined by Benz and Bowman [15] by using X-ray, metallographic, chemical and thermal analyses of phases equilibrated

#### Table 8

Comparison of calculated and experimental thermodynamic functions of formation of compounds  $N_{0.500}U_{0.500}(\text{fcc}B1)$ ,  $N_{1.5-1.75}U_{1}(\alpha - N_3U_2)$  and  $N_{0.587}U_{0.413}(\beta - N_3U_2)$ 

| $N_{0.500}U_{0.500}(fcc\_B1)$                         |         | $N_{1.5-1.75}U_1 \; (\alpha - N_3U_2)$           |        | $N_{0.587}U_{0.413}$ ( $\beta$ - $N_3U_2$ )      |        |
|-------------------------------------------------------|---------|--------------------------------------------------|--------|--------------------------------------------------|--------|
| $\Delta H^{\circ} f_{298.15 \text{ K}}$ (J/g at)      | Source  | $\Delta H^{\circ} f_{298.15 \text{ K}}$ (J/g at) | Source | $\Delta H^{\circ} f_{298.15 \text{ K}}$ (J/g at) | Source |
| -143 302*                                             | [34]    | -150190 (UN <sub>1.51</sub> )                    | [37]   | -147 161 (UN <sub>1.466</sub> )                  | [38]   |
| -145 603                                              | [35]    | -146 362 (UN <sub>1.69</sub> )                   | [37]   |                                                  |        |
| -147 068                                              | [35]    | -148 210 (UN <sub>1.60</sub> )                   | [37]   |                                                  |        |
| -146 649                                              | [35]    | -146410 (UN <sub>1.674</sub> )                   | [38]   |                                                  |        |
| -148 428                                              | [36]    | -146 662 (UN <sub>1.606</sub> )                  | [38]   |                                                  |        |
| -148 433 (UN <sub>0.9957</sub> )                      | [33]    |                                                  |        |                                                  |        |
| -145368 (UN <sub>0.997</sub> )                        | [38]    |                                                  |        |                                                  |        |
| -147 904                                              | [16,39] |                                                  |        |                                                  |        |
| -147 176                                              | Calc.   | -141 016 (mean)                                  | Calc.  | -140272 (UN <sub>1.42</sub> )                    | Calc.  |
| $\Delta S^{\circ} f_{298,15 \text{ K}}$ (J/(g at. K)) | Source  |                                                  |        |                                                  |        |
| -41.793                                               | [16]    |                                                  |        |                                                  |        |
| -41.793                                               | [39]    |                                                  |        |                                                  |        |
| -41.792                                               | Calc.   |                                                  |        |                                                  |        |
| $S_{298,15 \text{ K}}^{\circ}$ (J/(g at. K))          | Source  | $S_{298,15,K}^{\circ}$ (J/(g at. K))             | Source |                                                  |        |
| 31.213                                                | [16]    | 200.15 K ( C )/                                  |        |                                                  |        |
| 31.108                                                | [28]    | 25.104 (UN <sub>1.59</sub> )                     | [28]   |                                                  |        |
| 31.317                                                | [29]    | 24.123 (UN <sub>1.73</sub> )                     | [28]   |                                                  |        |
| 31.213                                                | [40]    | 24.337 (UN <sub>1.59</sub> )                     | Calc.  |                                                  |        |
| 31.210                                                | Calc.   | 25.000 (UN <sub>1.73</sub> )                     | Calc.  |                                                  |        |

| $T_k$                                                                 |                     |                         |                                                   |                     |                         |
|-----------------------------------------------------------------------|---------------------|-------------------------|---------------------------------------------------|---------------------|-------------------------|
| $\frac{1}{a_k}$                                                       | $b_k$               | $c_k$                   | $d_k$                                             | $e_k$               | $f_k$                   |
| $G(\mathbf{N}_1(G)) - H_{\text{SER}} = 298.15$<br>+4.6646852160E + 05 | -1.4043771609E + 01 | -2.0794084898E + 01     | +2.2542189921E – 05                               | -3.8832427557E - 09 | 0                       |
| 2700.00                                                               |                     |                         |                                                   |                     |                         |
| +4.6433455071E+05                                                     | +3.505001083/E+00   | $-2.3181084295E \pm 01$ | +9.6263901363E - 04                               | -6.6145675285E - 08 | $+1.2332984354E \pm 05$ |
| 5100.00<br>+5 8008701033E + 05                                        | 2 0727501406E ± 07  | ±1 7075036330E ± 01     | 4 0401611730E 03                                  | TE 5071330074E 00   | 7 1477807705E ± 07      |
| 7.0.076/01222E 7.02<br>9400.00                                        | 20 + 300+1007c70.c- | 10 + TOCCOCOC/07.1 +    | $c_0 = -\frac{1}{210c} / \frac{11010+0}{11010+0}$ | 00 - 7+700CCI/0C.0+ | -1.14/202/1402141       |
| +1.1710925656E + 05                                                   | +3.7925440880E + 02 | -6.1732606449E + 01     | +1.3467192742E - 03                               | -8.5528220648E - 09 | +4.7489547519E + 08     |
| 20 000.00                                                             | c                   | c                       | c                                                 | c                   |                         |
| +1.00000000E + 06                                                     | 0                   | 0                       | 0                                                 | 0                   | 0                       |
| $G(N_2(G)) - H_{SER} = 298.15$                                        |                     |                         |                                                   |                     |                         |
| -8.3813869009E + 03                                                   | -7.0709454305E - 01 | -2.8554404245E + 01     | +6.9736551083E - 04                               | -1.0549986152E - 06 | -1.8789410840E + 04     |
| 700.00                                                                |                     |                         |                                                   |                     |                         |
| -7.5266242005E + 03                                                   | -2.5478635371E + 01 | -2.4420991924E + 01     | <i>—</i> 5.4409059692Е <i>—</i> 03                | +4.3597971057E - 07 | 0                       |
| 1700.00                                                               |                     |                         |                                                   |                     |                         |
| -1.9879734861E + 04                                                   | +6.1143084893E + 01 | -3.6214645214E + 01     | -3.0059390056E - 04                               | +8.0030387261E - 09 | +2.5109876935E + 06     |
| 4100.00                                                               |                     |                         |                                                   |                     |                         |
| -6.8125887672E + 04                                                   | +1.9379573420E + 02 | -5.1954122735E + 01     | +2.0101453323E - 03                               | -5.6768614057E - 08 | +3.0451600692E + 07     |
| 7400.00                                                               |                     |                         |                                                   |                     |                         |
| -5.8980273939E + 04                                                   | +2.1852189752E+02   | -5.5341421331E + 01     | +2.8254888499E-03                                 | -7.9801245428E - 08 | 0                       |
| 10500.00                                                              |                     |                         |                                                   |                     |                         |
| +2.3833313259E + 06                                                   | -2.9945309064E + 03 | +2.9152283156E + 02     | -1.9150310573E - 02                               | +1.8222855139E - 07 | -3.2361228051E + 09     |
| 16000.00                                                              |                     |                         |                                                   |                     |                         |
| -4.9437049202E + 06                                                   | +3.6937509567E+03   | -3.9995639136E + 02     | +9.9271651301E-03                                 | -4.7605507842E - 08 | +1.1359091965E + 10     |

Table 9 Gibbs energy parameters of pure gaseous species in the N–U binary system, stored in DATACOMP [2]

 $G(\operatorname{Sub}) - G(\operatorname{Ref}) = a_k + b_k T + c_k T \log(T) + d_k T^2 + e_k T^3 + f_k T^{-1} \text{ for } T_k < T < T_{k+1}$ 

P.-Y. Chevalier et al. / Journal of Nuclear Materials 280 (2000) 136-150

| 000000E + 06                            | 0                   | 0                   | 0                   | 0                   | 0                   |
|-----------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| $-H_{\rm SER} = 298.15$<br>$647 \pm 05$ | -1.4324522775E + 01 | -2.9559541516E + 01 | -2.4131220209E-02   | +3.6156035861E-06   | +5.5714144000E + 04 |
| )702E+05                                | +1.5880927573E+02   | -5.5404528000E + 01 | -2.6570491791E - 03 | +1.9365644070E - 07 | +1.5364484800E + 06 |
| 0489E + 05                              | +2.1020746780E + 02 | -6.2295576418E + 01 | +6.5726455791E - 06 | -7.8680120000E - 10 | +3.3369492000E + 06 |
| 0000E + 06                              | 0                   | 0                   | 0                   | 0                   | 0                   |
| $-H_{\rm SER} = 298.15$<br>0123E + 05   | +1.3908624797E + 01 | -3.2542315284E+01   | +1.1279854842E - 02 | -2.4286028070E - 06 | +1.5190430400E+05   |
| 2978E+05                                | -2.0181340371E + 02 | -1.4447352000E + 00 | -9.0591968628E - 03 | +1.1778657403E - 07 | -2.6970064000E + 06 |
| 3757E + 05                              | -4.1603165833E + 02 | +2.6972156000E + 01 | -1.9057492358E - 02 | +7.6790346667E - 07 | -1.0691375200E + 07 |
| 0934E + 05                              | +6.9331218572E + 02 | -1.0784929398E + 02 | +5.0126412000E - 03 | -4.2475270527E - 08 | +1.4886253600E+08   |
| 1614E + 05                              | +8.0155056149E + 02 | -1.2051405094E+02   | +6.6447359409E – 03 | -8.1749084000E - 08 | +1.7611773960E+08   |
| 0000E + 06                              | 0                   | 0                   | 0                   | 0                   | 0                   |

| able 10                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| vibbs energy parameters of condensed pure elements (lattice-stabilities) and stoichiometric compounds in the N-U binary system, stored in THERMALLOY [2] |

| l/g at.              |
|----------------------|
| .п                   |
| $< T_{k+1}$          |
| < T                  |
| or $T_k$             |
| <sup>-1</sup> fo     |
| $\vdash f_k T$       |
| $kT^3$ +             |
| $\Gamma^{2} + e_{i}$ |
| $+ d_k$              |
| (I)                  |
| $T\log$              |
| $r + c_k$            |
| $+ b_k$              |
| $= a_k$              |
| Ref)                 |
| )<br>U               |
| (Sub)                |
| Ğ                    |

| (m) = (m)                                      | $-u_k + v_k i + v_k i$ | $(\tau) \perp u_k \tau \perp c_k \tau \perp$ | <i>Jk</i> 1 1 1 <i>k</i> ~ 1 ~ | 1k+1 m 2/8 m |            |                 |               |          |
|------------------------------------------------|------------------------|----------------------------------------------|--------------------------------|--------------|------------|-----------------|---------------|----------|
| Substance                                      | Ref.                   | $T_k$                                        | $a_{_k}$                       | $b_{_k}$     | $c_k$      | $d_k$           | $e_{_k}$      | $f_k$    |
| $N_{1}(L)$                                     | $N_2(G)$               | 298.15                                       | +29550.0                       | +59.02       |            |                 |               |          |
| $N_{i}(\alpha - N_{i}U_{j})$                   | $N_{,}(G)$             | 298.15                                       | +150000                        |              |            |                 |               |          |
| $U_{(ort_A20)}$                                | SER                    | 298.15                                       | -8407.734                      | +130.95515   | -26.9182   | +1.25156E – 3   | -4.42605E - 6 | +38 568  |
|                                                |                        | 955                                          | -22521.8                       | +292.121093  | -48.66     |                 |               |          |
| U <sub>1</sub> (tet)                           | SER                    | 298.15                                       | -5156.136                      | +106.976316  | -22.841    | -1.084475E - 2  | +2.7889E-8    | +81 944  |
|                                                |                        | 941.5                                        | -14327.309                     | +244.16802   | -42.9278   |                 |               |          |
| U <sub>(bcc_A2)</sub>                          | SER                    | 298.15                                       | -752.767                       | +131.5381    | -27.5152   | -8.35595E-3     | +9.67907E-7   | +204611  |
|                                                |                        | 1049                                         | -4698.365                      | +202.685635  | -38.2836   |                 |               |          |
| $U_{1}(L)$                                     | SER                    | 298.15                                       | +3947.766                      | +120.631251  | -26.9182   | +1.25156E – 3   | -4.42605E - 6 | +38 568  |
|                                                |                        | 955                                          | -10166.3                       | +281.797193  | -48.66     |                 |               |          |
| $U_{1}(fcc_B1)$                                | U, (ort_A20)           | 298.15                                       | +50000                         |              |            |                 |               |          |
| $U_{1}(L)$                                     | U <sub>(ort_A20)</sub> | 298.15                                       | +12355.5                       | -10.3239     |            |                 |               |          |
| $N_{0.600} U_{0.400}(S)$                       | $N_2(G)$               | 298.15                                       | -152126.72                     | +126.53137   | -9.890359  | +1.977238E-3    | -0.63222E-6   | +345388  |
| $(\alpha - N, U_{\gamma})$                     | $U_1(bcc_A2)$          |                                              |                                |              |            |                 |               |          |
| $N_{0.587} U_{0.413}(S)$<br>(B-N U))           | SER                    | 298.15                                       | -151 899.72                    | +172.94947   | -29.278101 | -0.828498E - 3  | -0.45202E - 6 | +417539  |
| $N_{0.500} U_{0.500}(S)$                       | SER                    | 298.15                                       | -156765.70                     | +157.03712   | -27.765544 | -0.037916E - 3  | -0.38839E - 6 | +191878  |
| $N_{1-x} \cup (Icc_BI)$<br>$N_{2,2x} \cup (S)$ | N, (G)                 | 298.15                                       | -152392.43                     | +139.43570   | -15.215831 | +12.737587E – 3 | -1.63922E-6   | +257 141 |
| $N_{1-x}U(fcc_B1)$                             | U, (ort_A20)           |                                              |                                |              |            |                 |               |          |
| ${ m N}_{0.500} { m U}_{0.500}(L)$             | $\mathbf{N}_{1}(L)$    | 298.15                                       | -72 096.465                    | +83.31969    | -15.215831 | +12.737587E - 3 | -1.63922E-6   | +257 141 |
|                                                |                        |                                              |                                |              |            |                 |               |          |

| Phase                                   | Formula                                                                 | Excess interaction parameters                                                                                                                                                          |                         |                   |
|-----------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------|
|                                         |                                                                         | Name                                                                                                                                                                                   | $a_{j,k:l}^{(v)}$       | $b_{j,k:l}^{(v)}$ |
| Liquid                                  | $[\mathbf{N}_1,\mathbf{N}_1\mathbf{U}_1,\mathbf{U}_1]_1\langle L angle$ | $L^0[\mathbf{N}_1,\mathbf{N}_1\mathbf{U}_1]_1\langle L angle \ L^0[\mathbf{N}_1,\mathbf{U}_1]_1\langle L angle \ L^0[\mathbf{N}_1,\mathbf{U}_1]_1\langle L angle$                      | 0<br>0<br>0             | 0<br>0<br>0       |
| Fcc_B1                                  | $[N_1,Va]_1[U_1]_1\langle fcc\_B1\rangle$                               | $\mathit{L}^{0}[N_{1},Va]_{1}[U_{1}]_{1}\langle fcc\_B1\rangle$                                                                                                                        | +26878.59               | 0                 |
| $\alpha$ -N <sub>3</sub> U <sub>2</sub> | $[N_1]_3[U_1,Va]_2 \langle \alpha\text{-}N_3U_2 \rangle$                | $L^0[\mathbf{N}_1]_3[\mathbf{U}_1,\mathbf{Va}]_2\langle lpha	extsf{-N}_3\mathbf{U}_2 angle\ L^1[\mathbf{N}_1]_3[\mathbf{U}_1,\mathbf{Va}]_2\langle lpha	extsf{-N}_3\mathbf{U}_2 angle$ | -52537.90<br>+128136.72 | +87.72937<br>0    |

Gibbs energy parameters of condensed solutions in the N-U binary system, stored in THERMALLOY [2]

Table 12

Table 11

**—** (...)

Fundamental thermodynamic properties of UN(fcc\_B1), stored in DATACOMP [2]

| $C_{\rm p} = 55.531088 + 0.151664 \text{E} - 3T + 4.66068 \text{E} - 6T^2$ |
|----------------------------------------------------------------------------|
| $-767512T^{-2}$ J/mol, 298.15 < T < 3000                                   |
| $\Delta H^{\circ} f_{298.15 \text{ K}} = -294354 \text{ J/mol}$            |
| $S_{298.15 \text{ K}}^{\circ} = 62.42 \text{ J/(mol K)}$                   |

(...) (...)

with N<sub>2</sub> (up to 5 atm), at temperatures up to 3123 K (2850°C). The uranium-rich side is of eutectic type (composition near pure U). The phase boundaries (N/U, x(U), T) of the UN solid solution were measured as: U-rich – 0.96±0.02, 0.510±0.005, 1773 K (1500°C); 0.92±0.02, 0.521±0.005, 2073 K (1800°C). N-rich – 1.04±0.02, 0.490±0.005, 1873 K (1600°C). UN congruent melting point: 0.96±0.03, 0.510±0.007, 3108±30 K (2835°C). The  $\alpha$ -U<sub>2</sub>N<sub>3</sub>(bcc)  $\iff \beta$ -U<sub>2</sub>N<sub>3</sub> (hexagonal) transition temperature of the sesquinitride was found to be 1393 K (1120°C), but may depend on composition. The composition of the hexagonal phase is UN<sub>1.47</sub>±0.02 at 1588 K (1315°C), near the decomposition is reported in Table 3.

More recently, Benz and Hutchinson [17] studied reaction layers formed on uranium at temperatures varying up to 2673 K (2400°C) in nitrogen (0.003–2.0 atm). Uranium-saturated UN phase boundaries (N/U, x(U), T) range from 0.991, 0.498, 1973 K (1700°C) to 0.997 ± 0.006, 0.499 ± 0.002, 3073 ± 30 K (2800°C), respectively. From a detailed argumentation, these authors concluded that the lower N/U values previously reported by Benz and Bowman [15] are in error. The N/U ratios of the UN phase in equilibrium with nitrogen at pressures up to 2 atm are concluded to be very near the value of 1.00 at temperatures between 1773 K (1500°C) and 2373 K (2100°C).

The phase relations of the N–U system were reported by Tagawa [16]. Emphasis was placed on the non-stoichiometry of uranium sesquinitride. According to [16], the non-stoichiometry range of  $\beta$ -U<sub>2</sub>N<sub>3</sub> is UN<sub>1.45-1.50</sub> (0.4 < x(U) < 0.408) and reported from various authors as UN<sub>1.34-1.46</sub> (0.407 < x(U) < 0.427), UN<sub>1.48</sub>, UN<sub>1.51</sub> (x(U) = 0.398, 0.403). The sesquinitride decomposes between UN and nitrogen at 1623 K (1350°C) at 1 atm. The mean value of N content for  $\beta$ -U<sub>2</sub>N<sub>3</sub> is 1.425, i.e., x(U) = 0.412. The non-stoichiometry range of  $\alpha$ -U<sub>2</sub>N<sub>3</sub> is UN<sub>1.54-1.75</sub> (0.3636 < x(U) < 0.3937). The mean value of N content for  $\alpha$ -U<sub>2</sub>N<sub>3</sub> is 1.645, i.e., x(U) = 0.378.

The non-stoichiometry range of  $\alpha$ -U<sub>2</sub>N<sub>3</sub> was experimentally studied by Bugl and Bauer [13], Tagawa [18], Lapat and Holden [19], Naoumidis and Stocker [20], Katsura et al. [21], Urabe et al. [22], Serizawa et al. [23], Nishimaki et al. [24] and Nagawa et al. [25].

Bugl and Bauer [13] studied the region  $U_2N_3$ – $UN_2$  using a Sievert type apparatus and determined the equilibrium compositions as a function of pressure and temperature.

Tagawa [18] measured equilibrium nitrogen pressures over the two-phase region  $UN + U_2N_3$  between 1023 and 1323 K. The U-rich phase boundary was obtained as N/U = 1.542.

Lapat and Holden [19] measured equilibrium decomposition pressures of  $U_2N_3$  from 873 to 1373 K and 1.6 < N/U < 1.7 by using a continuous vacuum balance technique and located some of the phase boundaries of the nitrides.

Naoumidis and Stocker [20] measured equilibrium pressures at different temperatures and thermodynamic data for 1.5 < N/U < 1.75. An isothermal pressure dependence of composition in the  $U_2N_3$ – $UN_2$  region was constructed.

Katsura et al. [21] obtained the composition of  $U_2N_{3+x}$  in equilibrium with  $N_2$  at 873 K by reacting uranium with nitrogen.

Urabe et al. [22] determined N<sub>2</sub> pressure-composition isotherms at 673, 873 and 1073 K for 1.6 < N/U < 1.8, but at insufficient pressure to reach the phase boundaries at latm.

Serizawa et al. [23] studied the dissolution of nitrogen in nitrogen-rich  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub>, prepared by the reaction of UH<sub>3</sub> and an NH<sub>3</sub> + H<sub>2</sub> gas stream.

Nishimaki et al. [24] analysed the thermodynamics of nitrogen-rich uranium sesquinitride formation by reaction of uranium monocarbide with ammonia.

Nagawa et al. [25] performed equilibrium measurements and obtained the N<sub>2</sub> pressure-composition isotherms in the temperature range 673–1173 K for the single phase  $\alpha$ -U<sub>2</sub>N<sub>3+x</sub> (1.63 < N/U < 1.76).

Fujino and Tagawa [26] proposed a statistical model for analyzing experimental thermodynamic properties of non-stoichiometric uranium sesquinitride.

The U–N phase diagram reported by Okamoto [7] modifies the liquidus on the uranium side to concur with the thermodynamic calculation reported by Ogawa [27], who claimed that the calculated boundary agrees well with selected experimental data, but the data source is unknown.

#### 3.3. Thermodynamic properties

The heat capacities of UN,  $UN_{1.59}$  and  $UN_{1.73}$  were measured from 11 to 320 K by Counsell et al. [28]. The

entropy at room temperature was reported as  $S_{298.15 \text{ K}}^{\circ} =$  30.953, 25.104, 24.123 J/(g at. K), respectively.

Westrum and Barber [29] determined the low-temperature heat capacity of UN by adiabatic calorimetry and  $S_{298,15 \text{ K}}^{\circ} = 31.317 \text{ J/(g at. K)}.$ 

The heat capacity at constant pressure and the enthalpy of UN were determined by Affortit [30,31]. Results between 800 and 2300 K are reported in Table 4. The heat capacity of UN is represented by a linear variation versus temperature between 1000 and 2000 K:

$$C_{\rm p}({\rm UN}) = 42.6768 + 17.5728 \times 10^{-3} T \, {\rm J}/({\rm mol} \, {\rm K}).$$
 (12)

The heat capacity at constant pressure and the enthalpy of UN were also measured by Cordfunke and Muis [32] between 380 and 702 K (Table 4).

The experimental values measured by Oetting and Leitnaker [33] from 298 to 1700 K can be expressed by the following equations:

$$H^{\circ}(T) - H^{\circ}(298.15 \text{ K}) = 48.873304T$$
  
+ 5.560954e<sup>-3</sup>T<sup>2</sup>  
+ 41.0534 × 10<sup>4</sup>T<sup>-1</sup>  
- 16443.12 J/mol, (13)



Fig. 1. Calculated N-U equilibrium phase diagram (this work) compared to the experimental information.

$$C_{\rm p}({\rm UN}) = 48.873304 + 11.1219088 \times 10^{-3}T - 41.0534 \times 10^{4}T^{-2} \text{ J/(mol K)}.$$
(14)

The thermodynamic properties of the compounds were studied by Tagawa [16,18]. The thermal functions of UN are reported in Table 5, the ones of UN<sub>1.54</sub> (U<sub>2</sub>N<sub>3</sub>) in Table 6, while the thermodynamic functions for the formation of UN are given in Table 7. By using values of heat capacity from various sources, Tagawa [16] proposed the following equation between 800 and 1700 K, and the average entropy  $S_{298.15}^{\circ}(\text{UN}) = 62.42528$  J/(mol K).

$$C_{\rm p}({\rm UN}) = 54.149328 + 22.8065656 \times 10^{-4}T + 4.37228 \times 10^{-6}T^2 - 6.81251432 \times 10^5 T^{-2} \ {\rm J/(mol \ K)}. \tag{15}$$

The heat of formation,  $\Delta H^{\circ}f_{298.15 \text{ K}}$  (UN), in J/mol, was measured as  $-286\,604 \pm 8368$  by Neumann et al. [34] with very impure uranium,  $-291\,206 \pm 1674$  by Gross et al. [35] who preferred the more negative values  $-294\,135$ ,  $-293\,298$  due to the formation of small amounts of sesquinitride,  $-296\,855$  by Hubbard [36],  $-299\,156 \pm 4603$  for UN<sub>0.965</sub> by O'Hare et al. [37],  $-296\,227$  for UN<sub>0.9957</sub> recalculated by Oetting and Leitnaker [33],  $-290\,300 \pm 2200$  by Johnson and Cordfunke [38] for UN<sub>0.997</sub>, and assessed as  $-295\,809$  J/mol by Tagawa [16] and Matsui and Ohse [39].

Thermodynamic properties (vapour pressure, heat capacity and enthalpy of formation) of UN were critically evaluated by Matsui and Ohse [39]. From the assessed values of the heat capacity (16,17) and  $S_{298,15 \text{ K}}^{\circ} = 62.43 \text{ J/(mol K)}$ , the thermal functions were calculated and reported in Table 5, while the thermodynamic functions for the formation of UN were also



Fig. 2. Enlargement of the non-stoichiometric compounds domain of the N–U equilibrium phase diagram (this work) compared to the experimental information.

obtained from the assessed values of the thermal functions and  $\Delta H^{\circ} f_{298,15 \text{ K}} = -295\,809 \text{ J/mol.}$ 

$$C_{\rm p}({\rm UN}) = 50.54 + 1.066 \times 10^{-2}T - 5.238 \times 10^{5}T^{-2} \text{ J/(mol K)}, (298.15 < T < 1000 \text{ K}),$$
(16)

$$C_{\rm p}({\rm UN}) = 49.96 + 1.112 \times 10^{-2}T$$
  
- 4.105 × 10<sup>5</sup>T<sup>-2</sup> J/(mol K), (T > 1000 K). (17)

In a more recent work, Hayes et al. [40] reviewed and collected the experimental thermodynamic data (specific heat, enthalpy, entropy, Gibbs free energy, free energy function, nitrogen and uranium vapour pressures, melting point) of uranium mononitride and developed empirical correlations for these properties versus temperature or nitrogen pressures. This compilation reported the high-temperature calorimetric data of Conway and Flagella [41] for the enthalpy of UN versus temperature, which allowed to extrapolate the heat capacity above 1700 K. Other experimental works of Takahashi et al. [42] and Fulkerson et al. [43] were also taken into account in the UN heat capacity assessment.

The heat of formation,  $\Delta H^{\circ}f_{298.15 \text{ K}}$  ( $\alpha$ -U<sub>2</sub>N<sub>3</sub>), was measured by different authors: Gross et al. [35] obtained -121964 J for the reaction 2UN + 0.5N<sub>2</sub>  $\iff$  U<sub>2</sub>N<sub>3</sub>. O'Hare et al. [37] calculated the enthalpy of formation of UN<sub>1.51</sub> and UN<sub>1.69</sub> to be -376978 and -393714 J/mol, respectively (-385346 for UN<sub>1.6</sub>). Tagawa [16,18] recalculated -69873 J/mol for UN<sub>1.54</sub>. This value is in total disagreement with the others and the more recent ones of Johnson and Cordfunke [38], which gives -391500 ± 2300 ( $\alpha$ -UN<sub>1.674</sub>), -382200 ± 2300 ( $\alpha$ -UN<sub>1.606</sub>), and -362900 ± 2300 ( $\beta$ -UN<sub>1.466</sub>).

On a modelling aspect, the thermodynamics of gas dissolution in liquid metals with extensive solubility was studied by Wang and Olander [44] who derived the pressure-composition-temperature relationships by using thermodynamic constraints and a modified Sievert's law.



# Cp of UN (FCC-B1) versus temperature

Fig. 3. Calculated specific heat (J/(mol K)) of the uranium mononitride UN(fcc\_B1) versus temperature (this work) compared to the experimental or assessed information.

#### 4. Optimization results

#### 4.1. Gibbs energy parameters

All experimental values (phase diagram and thermodynamic properties) have been taken into account in the optimization process, except the two low melting points of UN from Chiotti [11] and Newkirk and Bates [12], and the estimated thermodynamic functions of formation of  $UN_{1.54}$  ( $\alpha$ -U<sub>2</sub>N<sub>3</sub>) from Tagawa [16] based on an enthalpy of formation different from the other experimental ones. The optimized Gibbs energy parameters are given in J/mol for solution phases and J/g at. for stoichiometric compounds (x(N) + x(U) = 1).

The liquid phase was described by an ideal associate model with one lattice, occupied by pure species  $N_1(L)$  and  $U_1(L)$ , and associate species  $N_1U_1(L)$ . It corresponds to the following formula:  $[N_1, N_1U_1, U_1]_1(L)$ .

The Gibbs energy of the associate species  $N_1U_1(L)$  was optimized from the whole experimental information.

$$\begin{split} \Delta G(\mathbf{N}_1\mathbf{U}_1(L)) &= G(\mathbf{N}_{0.500}\mathbf{U}_{0.500}(L)) - 0.500G(\mathbf{N}_1(L)) \\ &\quad - 0.500G(\mathbf{U}_1(L)). \end{split}$$

The interaction terms  $L[N_1, N_1U_1]_1 \langle L \rangle$ ,  $L[N_1, U_1]_1 \langle L \rangle$ ,  $L[N_1U_1, U_1]_1 \langle L \rangle$ , were set to zero.

The non-stoichiometric UN solid solution was described by a two-sublattice model, by assuming the presence of vacancies on the nitrogen sublattice. It corresponds to the following formula:  $[N_1, Va]_1[U_1]_1$  (fcc\_B1).

The Gibbs energy of the nitrogen-rich side of the fcc\_B1 solid solution,  $N_1U_1(fcc_B1)$ , was described by a six-term function versus temperature, and referred either to  $N_2(G)$  and  $U_1(ort_A20)$  or to the standard element reference (SER) state:

$$\Delta^{(a)}G(N_1U_1(\text{fcc}\_B1)) = G(N_{0.500}U_{0.500}(\text{fcc}\_B1)) - 0.500G(0.5N_2(G)) - 0.500G(U_1(\text{ort}\_A20))$$

or

$$\Delta^{(b)}G(\mathbf{N}_{1}\mathbf{U}_{1}(\mathbf{fcc}_{B1})) = G(\mathbf{N}_{0.500}\mathbf{U}_{0.500}(\mathbf{fcc}_{B1})) - H_{\mathrm{SER}}.$$

The 'lattice-stability' of the fictive fcc\_B1 structure for pure uranium,  $G(U_1(\text{fcc}_B1)) - G(U_1(\text{ort}_A20))$ , was arbitrarily fixed to 50 000 J, to be unstable.

The interaction parameter  $L[N_1, Va]_1[U_1]_1\langle fcc_B_1 \rangle$ was optimized from the selected experimental limit of solubility.

The sesquinitride phase  $N_3U_2$  presents a low-temperature form,  $\alpha$ -N<sub>3</sub>U<sub>2</sub>, and a high-temperature form,  $\beta$ -N<sub>3</sub>U<sub>2</sub>.

The high-temperature form  $\beta$ -N<sub>3</sub>U<sub>2</sub> was considered as a stoichiometric compound, corresponding to the formula N<sub>1.42</sub>U<sub>1</sub>(*H*\_*T*). The low-temperature form  $\alpha$ -N<sub>3</sub>U<sub>2</sub> was considered as a solid solution with a non-stoichiometry range corresponding to the formula N<sub>1.54-1.75</sub>U<sub>1</sub>(*L*\_*T*). The nonstoichiometric  $\alpha$ -N<sub>3</sub>U<sub>2</sub> solid solution was also described by a two-sublattice model, by assuming the presence of vacancies on the uranium sublattice. It corresponds to the following formula: [N<sub>1</sub>]<sub>3</sub>[Va, U<sub>1</sub>]<sub>2</sub>( $\alpha$ -N<sub>3</sub>U<sub>2</sub>).

The Gibbs energy of the stoichiometric compounds  $N_{1.42}U_1(H_T)$  and  $N_3U_2(L_T)$  was described by a sixterm function versus temperature, and referred to the standard element reference (SER) state for the first one and to  $N_2(G)$  and  $U_1(bcc_A2)$  for the second one. The heat capacity of the low- and high-temperature forms was calculated from the estimated one of Tagawa [16,18] and the experimental data of Counsell et al. [28].

The lattice-stability of the fictive  $N_3(\alpha - N_3U_2)$  structure,  $G(N_3(\alpha - N_3U_2)) - G(0.5N_2(G))$ , was arbitrarily fixed to 150 000 J, to be unstable.

The interaction parameter  $L_{-}[N_{1}]_{3}[Va, U_{1}]_{2}\langle \alpha - N_{3}U_{2} \rangle$  was optimized from the selected experimental limits of solubility.

The gas phase was treated as an ideal mixture of pure species,  $N_1(G)$ ,  $N_2(G)$ ,  $N_3(G)$ ,  $U_1(G)$ . Thermodynamic data of pure gaseous species are taken from the DATACOMP substance database [2] and reported in Table 9.

All Gibbs energy parameters of condensed solution phases and stoichiometric compounds are stored in a special record of the THERMALLOY solution database [2], devoted to nuclear applications, and reported in Tables 10 and 11. The assessed fundamental thermodynamic properties of  $N_1U_1(\text{fcc}\_B1)$  are reported in Table 12 and stored in DATACOMP substance database [2].

# 4.2. Comparison of calculated and experimental properties

The calculated phase diagram compared to the available experimental information is presented in Fig. 1. The overall agreement is quite satisfactory. An enlargment of the non-stoichiometric compounds domain is shown in Fig. 2.

The calculated invariant reactions are compared to the experimental ones from Shunk [6], Okamoto [7], Storms [14], Benz and Bowman [15], and Tagawa [16] in Table 1. The temperature of decomposition of UN(fcc\_B1) is reported as a function of the total pressure.

The calculated thermal properties ( $C_p$  in J/(mol K),  $H_T - H_{298}$  in J/mol) of the stoichiometric compound UN are reported in comparison with the experimental values in Table 5 and Fig. 3.

The thermodynamic functions of formation ( $\Delta H_{\rm f}^{\circ}$  in J/mol,  $\Delta S_{\rm f}^{\circ}$  in J/(mol K)) of the stoichiometric compound UN are reported in comparison with the experimental

values in Table 7 versus temperature, and in Table 8 at room temperature.

#### 5. Conclusion

The N–U binary system was assessed thermodynamically in this work from the criticism of the available experimental data on both phase diagram and thermodynamic properties.

The liquid phase was described by an ideal associate model, the mononitride and the low-temperature form of the sesquinitride solid solutions by a non-ideal two-sublattices model; the high-temperature form of the sesquinitride was considered as a stoichiometric compound.

A consistent set of Gibbs energy parameters for the various phases was obtained. The agreement between experimental and calculated phase diagram or thermodynamic properties is quite satisfactory. These parameters may be integrated in a solution thermodynamic database for complex calculations in multicomponent systems.

# Appendix A

See Tables 9-12.

#### References

- H.L. Lukas, E.Th. Henig, B. Zimmermann, Calphad 1 (3) (1977) 225.
- [2] THERMODATA, Grenoble Campus, BP 66, 38402 Saint Martin d'Hères cedex, France.
- [3] B. Sundman, J. Agren, J. Phys. Chem. Solids 42 (1981) 297.
- [4] O. Redlich, A.T. Kister, Ind. Eng. Chem. 40 (1948) 345.
- [5] A.T. Dinsdale, Calphad 15 (4) (1991) 317.
- [6] F.A. Shunk, Constitution of Binary Alloys, second suppl., McGraw-Hill, New York, 1969.
- [7] H. Okamoto, J. Phase Equilibria 18 (1) (1997) 107.
- [8] M. Hansen, K. Anderko, Constitution of Binary Alloys, McGraw-Hill, New York, 1958.
- [9] R.P. Elliott, Constitution of Binary Alloys, first suppl., McGraw-Hill, New York, 1965.
- [10] T. Muromura, H. Tagawa, J. Nucl. Mater. 79 (1979) 264.
- [11] P. Chiotti, J. Am. Ceram. Soc. 35 (1952) 123.
- [12] H.W. Newkirk, J.L. Bates, US At. Energy Comm., HW-59468, 1959, p. 5.
- [13] J. Bugl, A.A. Bauer, J. Am. Ceram. Soc. 47 (9) (1964) 425.
- [14] K. Storms, US At. Energy Comm., LA-2942, 1964, p. 223.
- [15] R. Benz, M.G. Bowman, J. Am. Ceram. Soc. 88 (2) (1966) 264.

- [16] H. Tagawa, J. Nucl. Mater. 51 (1974) 78.
- [17] R. Benz, W.B. Hutchinson, J. Nucl. Mater. 36 (1970) 135.
- [18] H. Tagawa, J. Nucl. Mater. 41 (1971) 313.
- [19] P.E. Lapat, R.B. Holden, Nucl. Metal 10 (1964) 225.
- [20] A. Naoumidis, H.J. Stocker, Proc. Br. Ceram. Soc. 8 (1967) 193.
- [21] M. Katsura, M. Miyake, H. Serizawa, J. Alloys Compounds 193 (1993) 101.
- [22] T. Urabe, K. Takahashi, M. Katsura, M. Miyake, J. Alloys Compounds 193 (1993) 122.
- [23] H. Serizawa, K. Fukuda, M. Katsura, J. Alloys Compounds 232 (1996) 274.
- [24] K. Nishimaki, M. Hirota, T. Nagawa, T.A. Yamamoto, M. Miyake, M. Katsura, J. Alloys Compounds 271–273 (1998) 654.
- [25] T. Nagawa, K. Nishimaki, T. Urabe, M. Katsura, J. Alloys Compounds 271–273 (1998) 658.
- [26] T. Fujino, H. Tagawa, J. Phys. Chem. Solids 34 (10) (1973) 1611.
- [27] T. Ogawa, J. Nucl. Mater. 201 (1993) 284.
- [28] J.F. Counsell, R.M. Dell, J.F. Martin, Trans. Faraday Soc. 62 (1966) 1736.
- [29] E.F. Westrum Jr., C.M. Barber, J. Chem. Phys. 45 (2) (1966) 635.
- [30] C. Affortit, High Temp. High Press. 1 (1969) 27.
- [31] C. Affortit, J. Nucl. Mater. 34 (1970) 105.
- [32] E.H.P. Cordfunke, R.P. Muis, J. Nucl. Mater. 42 (1972) 233.
- [33] F. Oetting, J. Leitnaker, J. Chem. Thermodyn. 4 (1972) 199.
- [34] B. Neumann, C. Kroger, H. Haebler, Z. Anorg. Allg. Chem. 207 (1932) 145.
- [35] P. Gross, C. Hayman, H. Clayton, Thermodynamics of Nuclear Materials, IAEA, Vienna, 1962, p. 653.
- [36] W.H. Hubbard, USAEC Report TID-15554, 1962.
- [37] P.A.G. O'Hare, J.L. Settle, H.M. Feder, W.N. Hubbard, Thermodynamics of Nuclear Materials, IAEA, Vienna, 1968, p. 265.
- [38] G.K. Johnson, E.H.P. Cordfunke, J. Chem. Thermodyn. 13 (1981) 273.
- [39] T. Matsui, R.W. Ohse, High Temp. High Press. 19 (1987) 1.
- [40] S.L. Hayes, J.K. Thomas, K.L. Peddicord, J. Nucl. Mater. 171 (1990) 300.
- [41] J.B. Conway, P.N. Flagella, Physical and Mechanical Properties of Reactor Materials, General Electric Company, GEMP-1012, 1969.
- [42] Y. Takahashi, M. Murabayashi, Y. Akimoto, T. Mukaibo, J. Nucl. Mater. 38 (1971) 303.
- [43] W. Fulkerson, T.G. Kollie, S.C. Weaver, J.P. Moore, R.K. Williams, in: Proceedings of the Fourth International Conference on Plutonium and other Actinides, AIME, Santa Fe, 1979, p. 374.
- [44] W.E. Wang, D.R. Olander, J. Alloys Compounds 228 (1995) 31.